
Ife Journal of Information and Communication Technology, Volume 6, 2022

ISSN – 2645 2413 ©2022 IJICT - Akinyemi

A Vulnerability Detection Model For Web
Applications

Bodunde Akinyemi
Department of Computer Science and Engineering

Obafemi Awolowo University
Ile-Ife, Nigeria

 bakinyemi@oauife.edu.ng

Abstract— Web application security is critical with today’s
rapidly growing dependency on web applications. Because of the
increase in security flaws in web applications, there is an urgent
need to develop robust and efficient web application scanners.
Most existing web application scanners only focus on SQL
injection and cross-site scripting and underestimate
vulnerabilities like HTTP header injection and web server
domain file disclosure, thus leading to high false-positive or
false-negative results. This study formulated a vulnerability
detection model by employing a tainted mode and a penetration
testing model. The tainted mode model was used to map an
HTTP request made to a web application in its initial state to the
resulting HTTP response and the state of the web application
after the request was made. The penetration testing model was
used to fuzz a working instance of a web application and also to
check for security vulnerabilities that contained signatures of
HTTP header injection, file disclosure, or directory listing. The
implementation was done using the Java programming
language to design a multithreaded web crawler and a test
module for fuzz processes. The proposed model was evaluated
using a sample web application's entry point (a link or url) as a
test bed. Its performance was assessed using accuracy, precision,
and recall as metrics. The result showed that the proposed
model yields fewer false-positive results for the selected
vulnerabilities. Network administrators can use the proposed
model to support quality assurance testing of a web application
prior to deployment.

Keywords—Security, Vulnerability, HTTP header injection,
Web applications, file disclosure

I. INTRODUCTION
As more and more vital data and information are stored on

the web due to the increase in the usage of web resources
across various disciplines, the number of transactions on the
web and the need for its usage have increased seamlessly. The
evolution of web technologies and the substantial innovation
in the field has led to both a huge rise in productivity as well
as security vulnerabilities [1]. The emergence of new
technological possibilities opens up a number of application
products and much more effective and suitable approaches to
performing tasks, but it also gives rise to the potential for
technology exploitation. The web applications that are
currently employed by various users have the potential to
either help them operate smoothly and productively or result
in countless hours of irritation and lost productivity. Some
web applications contain sensitive information, such as
financial transaction information. As web applications have
grown, so have their vulnerabilities [2]. These vulnerabilities
are flaws that an attacker can leverage to exploit the system.
Day in and day out, new security vulnerabilities are found in

widely known applications. In recent times, web applications
have become the primary targets of attacks[3]. It is expedient
that proper security web applications be put in place.

Web applications, the processes that run on them, and the
information disseminated and stored electronically all have
long-standing security issues[4]. Web application security is
one of the most important security measures to implement
now that web application reliance has shifted from personal to
business and organizational use. Most of the security flaws
and vulnerabilities in web applications presently are due to
oversight on the part of the developers during the development
process or poor development turnaround. The use of coding
guidelines, security reviews of the code, penetration tests,
code vulnerability analyzers, etc. are all necessary for
preventing vulnerabilities. By strictly enforcing secure
development principles, web application security can be
improved [5]. This can also be achieved in other ways because
of the array of development languages and libraries that are
considerably more advanced, offering routines that are already
well-tested and can be used in applications. Security testing is,
therefore, a significant part of testing web applications.

The convenience of use, tremendous quality of
automation, and autonomy provided by the technologies of the
web application have all contributed to the growth of web
application scanners. In many cases, web application scanners
are positioned as "point-and-click" pentesting instruments [3].
Web application scanners crawl through the pages of a web
application to check for vulnerabilities through the use of
attack simulation. The tools also seek out software coding
flaws like invalid input strings and buffer overflows, along
with vulnerabilities specific to web applications.

Several web application scanners have been implemented
in the past, most of which focus on SQL injection and cross-
site scripting (XSS). XSS typically attacks the web browser
on the client side, whereas SQL injection, a similar web
vulnerability, is directly implicated on the server side [2].
These available security scanners overlook vulnerabilities like
HTTP header injection, usually known as Carriage Return and
Line Feed (CRLF) injection, and web server domain file
disclosure and directory listing. Other scanners produce false-
positive or false-negative results when scanned against these
vulnerabilities.

This paper attempts to provide a tool for exposing poor
development and an automated and dynamic security analysis
tool that produces fewer false-positive or false-negative
results on HTTP header vulnerabilities and file disclosure or
directory listing vulnerabilities.

Ife Journal of Information and Communication Technology, Volume 6, 2022

 8

II. RELATED WORKS
There are several approaches to scanning a web

application for vulnerabilities; most of these approaches
incorporate a fault injection technique that uses real-life
vulnerability test cases to inject the Data Entry Point (DEP) of
a web application. According to the Open Web Application
Security Project (OWASP), manual code review is the most
efficient way to discover web application security
vulnerabilities. This technique is time-consuming and requires
the expertise of a professional. It is also known to be prone to
overlooking errors due to the exhaustiveness of the technique.
Although identifying and resolving vulnerabilities in web
applications is the most important means of web application
security, there are other approaches as well, such as secure
development, the use of intrusion detection and/or prevention
systems, and the use of web application firewalls [6].

Several web application scanners have been implemented
in the past, taking into account different categories of
vulnerabilities. One of the most prevalent and significant
vulnerabilities in web environments is SQL injection, which
has drawn a lot of interest from researchers and software
developers. SQL injection vulnerabilities are crucial for web
services as they are closely related to the way the service's
code is constructed. Various studies have proposed a number
of SQL injection vulnerability detection mechanisms [1], [4],
and [7–16]. Aside from web-based systems, a SQL injection
attack detection model has been developed for other
applications, such as cloud applications, particularly SaaS
applications, because they are vulnerable to most common
web attacks [17], network flow data [18], and mobile
applications.

Cross-site scripting is also another category of web
vulnerability that attackers have explored. It is a kind of
scripting code that is injected into the flexibly resulting pages
of trusted websites in order to transmit sensitive information
to an unknown source (i.e., the attacker's server) without being
noticed by a relatively similar policy or cookie safeguard
mechanism, allowing attackers to access private information.
Much effort has been put in place to curb this menace [19–25].
Also, some researchers focused on varieties of vulnerabilities,
for example, cross-site scripting and SQL injection
vulnerabilities [26] and cross-channel scripting and code
injection attacks on cloud-based applications [27]. Also, a web
application injection tool for attacks and vulnerabilities based
on the controlled injection of real vulnerabilities and a
subsequent attack on the system using those weaknesses [28],
and so on.

The major drawback of most existing security scanners is
their inability to cover the ranges of several other
vulnerabilities, produce fewer false positives, and provide a
user interface with which a common man with little or no
knowledge of security scanning can easily access these tools.

In this study, an attempt is made to develop a security
scanner focusing on two types of web application
vulnerabilities that result from poor turn-around during the
development of a particular web application. These
vulnerabilities are: HTTP header injection, such as the
carriage return line feeder vulnerability (i.e. CRLF injection),
and Web application domain server file disclosure or directory
listing. The existing security scanners provide a manual
interface for accessing these vulnerabilities; therefore, anyone
using these tools needs expertise in web application security

assessment. The proposed security scanner would be an
automated tool for accessing these vulnerabilities, which have
been overlooked by most of the earlier developed security
scanning tools.

III. METHODOLOGY
The study's primary objective is to develop a vulnerability

detection system that covers HTTP header injection and web
application domain server file disclosure or directory listing.
The conceptual model is depicted in Fig. 1.

Fig. 1: A Conceptual model of the proposed system

The proposed web application scanner consists of three
major modules: a web crawler module, an attacker or injection
module, and an analysis module. The HTML document
parsing was used to extract the URL from the HTML
document file, and the injection module utilised the socket
connection to issue a raw HTTP request. The three key
modules are described as follows:

A. Web Crawler Module
The web crawler segment is populated with a collection of

URLs. It then receives the related pages, explores the links,
and redirects to discover all the web application's accessible
pages. Additionally, the crawler recognises all of the web
application's entry points, such as GET request parameters,
input fields of the HTML form, and controls for file uploads.

B. Attack or Injection Module
The attacker module examines the input points and URLs

that the crawler has detected. The attacker component then
constructs values for each input that are likely to trigger a
vulnerability, and for each type of vulnerability, it runs the
web application vulnerability scanner. The attacker segment
would attempt to exploit the HTTP header injection
vulnerability by manipulating the web application into adding
extra HTTP headers to legitimate HTTP responses or injecting
a CRLF sequence into the response to add or modify existing
data, including headers and even the entire response body.

Ife Journal of Information and Communication Technology, Volume 6, 2022

 9

Additionally, the attacker may force information disclosure
from the web server domain by having to interact with the
website in unusual or malicious ways and then studying the
website's responses to look for interesting behaviour, such as
directly specifying the names of database tables or columns in
error messages, exposing hidden directories' names,
structures, and contents via directory listing, and providing
temporary backup copies of source code files for access.

C. Analysis Module
The analysis component analyses the pages the web

application returns in response to attacks launched by the
attacker module in order to find potential problems and notify
the other modules. The analysis module determines the
presence of an HTTP header injection and a web application
domain server file disclosure or directory listing vulnerability.

IV. PROPOSED WEB APPLICATION VULNERABILITY
DETECTION MODEL

A vulnerability detection model was formulated as a
hybrid model integrating the following models:

• A tainted mode model that maps an HTTP request
issued to a web application in its initial state, the
resulting HTTP response, and the state of the web
application after the request was made; and

• A penetration testing model that fuzzes a working
instance of a web application to check for security
vulnerabilities that contain signatures of HTTP header
injection and file disclosure or directory listing.

The modelling process adopted in the development of the
system is described as follows:

A. Tainted mode model
The taint mode model is employed for code security to

make a web application more selective about the data it
receives from external sources like users, file systems, web
environments, local data, other programmes, and various
system calls. The tainted mode model is expressed as follows:

 A web application is described as the mapping from a
request and its current state to the response, the Data
Dependency Graph, and the new state as shown in Equations
(1) and (2):

Where:

Req is the HTTP request submitted to the web application.

State is the left part refers to the web application state, which is
made up of the elements of the web application context (i.e.,
database, file system, LDAP, etc.)

Response represents the HTTP response that the web application
provided.

DDG is the Data Dependency Graph (sometimes referred to as
the Program Dependency Graph), which depicts the web
application's execution and data flow path.

To more precisely quantify the degree of security
vulnerability caused by poor (or absent) input validation, the
following assumptions were established:

• All client-provided data obtained through HTTP
requests is considered incredible (or tainted).

• All locally generated data for a web application is
regarded as credible (or untainted), and internal attacks
do not exist. The only kind of communication,
however, is HTTP requests and responses.

• Any flawed data can be rendered credible using special
sanitization.

B. Penetration testing approach
The methodology used for penetration testing is based on

simulated attacks on web applications. The steps involved in
this simulation are as follows:

• Identification of all web pages as being part of the web
application. Attacks are launched against recognised
application Data Entry Points (DEPs) during this
phase. This task can be accomplished manually by
recording it with a proxy, automatically using web
crawlers, or semi-automatically.

• Extraction of DEPs from web pages. The outcome is a
collection of DEPs that can be evaluated.

• Attack simulation is commonly referred to as
"fuzzing." Every DEP parameter is utilised in an HTTP
request to a web application that has been fuzzed with
malicious patterns.

• Scanning each HTTP response that is obtained for
evidence of vulnerabilities

Black box testing is used to implement penetration testing.
Using the best injection pattern on a web application, fault
injection techniques are used to find vulnerabilities.

The sequence and class diagram of the proposed model are
depicted in Figs. 2 and 3. The activities are described as
follows:

The analyst (web app tester) enters the web host URL of
the web application into a web browser already configured to
listen on an intercepting proxy of the proposed system. The
proxy intercepts the web request and forwards it to the web
spider, which crawls the URL to retrieve corresponding URLs
to all web applications’ pages and subpages. The fetched
page’s URLs are saved in a queue, then forwarded to the
vulnerability scanner/injection module for vulnerability
testing. In the vulnerability scanner module, the URLs are
fuzzed with test cases of the project vulnerabilities; the fuzzed
URLs are then used to make HTTP requests from the web
application. To detect the presence of a vulnerability, the
HTTP response corresponding to the HTTP request is scanned
for expected and unexpected signatures. The result of the scan
is returned to the web browser that made the original request
for ease of use and proper presentation.

W: Req × State → DDG × Response × State (1)

DDG = (V, E) (2)

Ife Journal of Information and Communication Technology, Volume 6, 2022

 10

Fig. 2: Event Diagram of the proposed model

Fig. 3: Class Diagram of the proposed model

Ife Journal of Information and Communication Technology, Volume 6, 2022

 11

V. SYSTEM IMPLEMENTATION
The proposed web application vulnerability evaluation

system was implemented using the Java Programming
Language. The proposed model implemented three different
modules: the web crawler module, the test/injector module,
and the interface of the designed model.

The web crawler module was implemented using a multi-
threaded process for speedy crawling using the Java
ThreadExecutorService class with a maximum number of
eight threads to handle the crawling and effective computer
memory management as memory usage increases during
crawling. The web crawler is also integrated with an HTML
document parser for effective parsing of HTML tags and
prefetching the links embedded in the HTML document,
which are further added to a queue from which the crawling
scheduler picks the next URL to crawl. The Java Jsoup API
was employed for parsing the HTML document as needed.

The test/injection module consists of the file disclosure
test and the header injection test. The file disclosure test was
implemented by parsing an HTML document returned by a
URL using the Jsoup API to fetch the HTML title tag and
check if its contents contain "index of," which is the signature
that denotes file disclosure on a web application. If the title
tag has "index of," the test is successful. The header injection
test was implemented by posting a modified raw HTTP
request to the output stream of the socket connection created
with the hostname of the web application to be tested. The
corresponding HTTP response to the HTTP request made is
retrieved by reading input from the input stream of the socket
connection created earlier. If the HTTP response code from
the read input stream returns "200 ok" or "404 not found,"
then the test was successful.

The interface for the web application vulnerability
evaluation system was implemented using the Java Swing
API. Among the interfaces created are:

• The Base URL Text Field: This is where the user will
input the web application URL to crawl

• The Crawler depth Text Field: This is where the user
will input the desired depth of the crawl.

• The Crawl Button: This button initiates the start
process for the crawl.

• The Stop Button: This button initiates the
termination of an initiated crawling process.

• The Crawl Result View: This is where the crawled
URL results are appended.

• The Test/Injection Result View area: This view area
consists of components that display the result of the
Test/Injection performed on a URL in the Crawl Result
View. The Test or Injection action is initiated on clicking
a URL in the Crawl Result View List.

VI. RESULTS AND DISCUSSIONS
 The implemented system was tested with the URL of

Obafemi Awolowo University, Ile-Ife, Nigeria (i.e.,

http://oauife.edu.ng) to identify the two vulnerabilities under
consideration. Fig. 4 shows the snapshot of the web crawler
initiation to "http://oauife.edu.ng" with a depth of 2. Fig. 5
shows the initiation of a file disclosure or header injection
vulnerability evaluation
of ”http://ips.oauife.edu.ng/loginpg.asp".

Fig. 4: The Web Crawler initiation to “http://oauife.edu.ng” with depth

of 2

Fig. 5: The Initiation of file disclosure/header injection check on

http://ips.oauife.edu.ng/loginpg.asp

The network traffic training dataset for this study was
gathered using Wireshark application at the cybersecurity
laboratory of the African Center of Excellence, Obafemi
Awolowo University, Ile-Ife. The setup is a controlled room
where inbound and outbound traffic are safe from intrusions.
The setting also enables the execution of real life attack
scripts.. The statistics of the dataset used for the simulation of
the proposed model are given in Table 1.

Table 1: Dataset Statistics

Dataset Normal
Instances

Attack
Instances

Sub-total

Training dataset 23,375 22,204 45,579
Testing Dataset 4,906 5,094 10,000
Total 28,281 27,298 55,579

Ife Journal of Information and Communication Technology, Volume 6, 2022

 12

The values for True Positive (TP), False Positive (FP),
True Negative (TN), and False Negative (FN) across five (5)
simulation iterations are displayed in Table 2, where;

• TP indicates that relevant vulnerabilities have been
detected.

• FN indicates that irrelevant vulnerabilities are
detected

• FP indicates relevant vulnerabilities that are not
detected; and

• TN indicates irrelevant vulnerabilities that are not
detected.

Table 2: Detection results of the Proposed model

Iterations TP FP TN FN
1 76 4 212 13
2 86 11 202 23
3 77 2 191 5
4 78 3 181 9
5 90 6 211 12

The performances of the proposed vulnerability detection
model were evaluated using precision, recall, and accuracy
described as follows:

• Precision reveals the detection model’s ability to detect
only the relevant vulnerabilities while attempting to
avoid combining them with irrelevant ones. It is
evaluated in Equation 3 as follows:

• Recall reveals the detection model's ability to

identify relevant vulnerabilities. It is calculated in
Equation 4 as follows:

• The detection accuracy reflects the exactness of the
detection. It is evaluated using Equation 5.

Table 3 and Fig. 6 show the percentage evaluation results
of the proposed model. The results show that the proposed
model accurately and precisely classifies the selected
vulnerabilities. There is a reduction in the false alarm rate. Fig.
7 depicts the Receiver Operating Curve of the model with a
0.88 Area Under the Curve (ROC_AUC). Higher accuracy is
shown by the curve being drawn closer to the graph's left
boundary.

Table 3: Evaluation results of the proposed model

Iterations Precision Recall Accuracy
1 95.00 85.39 94.43
2 91.49 78.90 90.28
3 97.47 93.90 97.45
4 89.66 89.66 93.50
5 93.75 88.24 94.36

Fig. 6: Evaluation results of the proposed model

Fig.7. Area under Curve of the proposed vulnerability detection model

VII. CONCLUSIONS
The usefulness of the web application vulnerability

evaluation system goes beyond a security test tool, as it serves
as an analyst for individuals and product owners with no prior
knowledge of web application security test procedures. It is
also being used to build a sitemap of the web application,
which will be useful for search engine optimization. This
study developed a vulnerability detection model that covers
HTTP header injection and web application server file
disclosure or directory listing. The model performs
effectively and efficiently in all measures when used to
evaluate a web application through its entry point URL; thus,
the system can be leveraged to support quality assurance
testing of a web application before deployment. Nonetheless,
it is recommended that developers use test-driven
development during the development phase of a web
application to scrutinize or reduce the possibility of flaws or
vulnerabilities during product deployment.

REFERENCES
[1] M.S. Aliero, I. Ghani, and K.N Qureshi, “An algorithm for detecting

SQL injection vulnerability using black-box testing, “J Ambient Intell
Human Comput, vol. 11, pp. 249–266, 2020.

[2] J. Majumder and G. Saha, "Analysis of SQL Injection Attack,"
International Journal of Computer Science and Informatics: Vol. 2, Iss.
4, 2013, DOI: 10.47893/IJCSI.2013.1102

[3] E. Fong and V. Okun, "Web Application Scanners: Definitions and
Functions," 2007 40th Annual Hawaii International Conference on
System Sciences (HICSS'07), Waikoloa, HI, USA, 2007, pp. 280b-
280b, doi: 10.1109/HICSS.2007.611.

Precision (P) = TP /(TP+FP) (3)

Accuracy = (TP+TN)/ (TP+TN+FP+FN) (5)

Recall (R) = TP/ (TP+FN) (4)

Ife Journal of Information and Communication Technology, Volume 6, 2022

 13

[4] N. Antunes and M. Vieira, "Detecting SQL Injection Vulnerabilities in
Web Services," 2009 Fourth Latin-American Symposium on
Dependable Computing, João Pessoa, Brazil, 2009, pp. 17-24, doi:
10.1109/LADC.2009.21

[5] M. Vieira, N. Antunes and H. Madeira, "Using web security scanners
to detect vulnerabilities in web services," 2009 IEEE/IFIP International
Conference on Dependable Systems & Networks, Lisbon, Portugal,
2009, pp. 566-571, doi: 10.1109/DSN.2009.5270294.

[6] A. Petukhov and D. Kozlov, “Detecting Security Vulnerabilities in
Web Applications Using Dynamic Analysis with Penetration Testing,
” In Proceedings of the OWASP Application Security Conference, May
19-22, 2008.

[7] N. Antunes, N. Laranjeiro, M. Vieira and H. Madeira, "Effective
Detection of SQL/XPath Injection Vulnerabilities in Web Services,"
2009 IEEE International Conference on Services Computing,
Bangalore, India, 2009, pp. 260-267, doi: 10.1109/SCC.2009.23.

[8] S. Madan and S. Madan, "Shielding against SQL Injection Attacks
Using ADMIRE Model," in Computational Intelligence,
Communication Systems and Networks, International Conference on,
Indore, India, 2009 pp. 314-320. doi: 10.1109/CICSYN.2009.58

[9] A. Ciampa, C. A. Visaggio, and M. D. Penta, “ A heuristic-based
approach for detecting SQL-injection vulnerabilities in web
applications, “ SESS '10: Proceedings of the 2010 ICSE Workshop on
Software Engineering for Secure Systems, May 2010 Pages 43–
49https://doi.org/10.1145/1809100.1809107

[10] A. B. M. Ali, A. I. Shakhatreh, M. S. Abdullah, and J. Alostad, SQL-
injection vulnerability scanning tool for automatic creation of SQL-
injection attacks, Procedia Computer Science, Vol. 3, 2011, pp. 453-
458,

[11] D. Appelt, C.D. Nguyen, L.C. Briand, and N.Alshahwan, “Automated
testing for SQL injection vulnerabilities: An input mutation approach,”
In Proceedings of the 2014 International Symposium on Software
Testing and Analysis, San Jose, CA, USA, 21–25 July 2014; pp. 259–
269

[12] İ. kara and M. Aydos, "Detection and Analysis of Attacks Against Web
Services by the SQL Injection Method," 2019 3rd International
Symposium on Multidisciplinary Studies and Innovative Technologies
(ISMSIT), Ankara, Turkey, 2019, pp. 1-4, doi:
10.1109/ISMSIT.2019.8932755.

[13] H. Gu, J. Zhang, T. Liu, M. Hu, J. Zhou, T.Wei, and M.
Chen,"DIAVA: A Traffic-Based Framework for Detection of SQL
Injection Attacks and Vulnerability Analysis of Leaked Data," in IEEE
Transactions on Reliability, vol. 69, no. 1, pp. 188-202, March 2020,
doi: 10.1109/TR.2019.2925415.

[14] J. Harefa, G. Prajena, A. A. Muhamad, E.V. S. Dewa, S. Yuliandry,
“SEA WAF: The Prevention of SQL Injection Attacks on Web
Applications,” Advances in Science, Technology and Engineering
Systems Journal, Vol. 6, No. 2, pp. 405-411, 2021.

[15] Z. Marashdeh, K. Suwais and M. Alia, "A Survey on SQL Injection
Attack: Detection and Challenges," 2021 International Conference on
Information Technology (ICIT), Amman, Jordan, 2021, pp. 957-962,
doi: 10.1109/ICIT52682.2021.9491117.

[16] M. Alghawazi, D. Alghazzawi, and S. Alarifi, “Detection of SQL
Injection Attack Using Machine Learning Techniques: A Systematic
Literature Review,” J. Cybersecurity. Priv., 2022, vol. 2, pp. 764–777,
doi: 10.3390/jcp2040039

[17] D. Tripathy, R. Gohil, and T. Halabi, “Detecting SQL Injection Attacks
in Cloud SaaS using Machine Learning. In Proceedings of the 2020
IEEE 6th Intl Conference on Big Data Security on Cloud
(BigDataSecurity), IEEE Intl Conference on High Performance and
Smart Computing (HPSC) and IEEE Intl Conference on Intelligent
Data and Security (IDS), Baltimore, MD, USA, 25–27 May 2020; pp.
145–150

[18] I. S. Crespo-Martínez, A. Campazas-Vega, Á. M. Guerrero-Higueras,
V. Riego-DelCastillo, C. Álvarez-Aparicio, and C. Fernández-Llamas,
“SQL injection attack detection in network flow data,” Computers &
Security, Vol. 127, 2023, 103093,

[19] G. Wassermann, and Z. Su, “Static detection of cross-site scripting
vulnerabilities,” ICSE '08: Proceedings of the 30th international
conference on Software engineering, May 2008, pp. 171–180, doi:
10.1145/1368088.1368112

[20] T. S. Barhoom and S. N. Kohail, A New Server-Side Solution for
Detecting Cross Site Scripting Attack, International Journal of
Computer Information Systems, Vol. 3, No. 2, pp. 19-23, 2011.

[21] M.I.P. Salas and E. Martins, “Security Testing Methodology for
Vulnerabilities Detection of XSS in Web Services and WS-Security,”
Electronic Notes in Theoretical Computer Science, Vol. 302, pp. 133-
154, 2014.

[22] E. Uma and A. Kannan, “Improved cross site scripting filter for input
validation against attacks in web services,” Kuwait Journal of Science
(KJS), Vol. 41, No. 2, 2014.

[23] G. E. Rodríguez, J. G. Torres, P. Flores, and D. E. Benavides, “Cross-
site scripting (XSS) attacks and mitigation: A survey, Computer
Networks,” Vol. 166, 106960, 2020.

[24] F. M. M. Mokbal, D. Wang, and X. Wang, “Detect Cross-Site
Scripting Attacks Using Average Word Embedding and Support
Vector Machine,” International Journal of Network Security, Vol.24,
No.1, pp.20-28, 2022, doi: 10.6633/IJNS.202201 24(1).03.

[25] S. Lee, S. Wi, and S. Son, “Link: Black-Box Detection of Cross-Site
Scripting Vulnerabilities Using Reinforcement Learning,” WWW '22:
Proceedings of the ACM Web Conference, 2022, pp. 743–754, doi.:
10.1145/3485447.3512234

[26] M. K. Gupta, M. C. Govil and G. Singh, "Static analysis approaches to
detect SQL injection and cross site scripting vulnerabilities in web
applications: A survey," International Conference on Recent Advances
and Innovations in Engineering (ICRAIE-2014), Jaipur, India, 2014,
pp. 1-5, doi: 10.1109/ICRAIE.2014.6909173.

[27] M. Indushree, M. Kaur, M. Raj, R. Shashidhara and H. Lee, "Cross
Channel Scripting and Code Injection Attacks on Web and Cloud-
Based Applications: A Comprehensive Review, " Sensors 22, no.
5:1959, 2022, doi :10.3390/s22051959.

[28] J. Fonseca, M. Vieira and H. Madeira, "Vulnerability & attack injection
for web applications," 2009 IEEE/IFIP International Conference on
Dependable Systems & Networks, Lisbon, Portugal, 2009, pp. 93-102,
doi: 10.1109/DSN.2009.5270349.

[29] B.O. Akinyemi, J. B. Adekunle, T. A. Aladesanmi, G A. Aderounmu
and B.H. Kamagaté, “An Improved Anomalous Intrusion Detection
Model, ” FUOYE Journal of Engineering and Technology, Vol. 4, No.
2, pp.81-88,.2019,

