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Abstract—Porosity and permeability are critical factors in 
determining the productivity of an oil and gas well. Higher 
porosity and permeability values generally translate into higher 
production rates and longer well lifetimes. This paper presents 
a smart system for predicting the porosity and permeability of 
petro-physical-rock-types. The system model was developed and 
trained using only permeability and porosity data from a 
reservoir database. The model was trained using the four layers. 
The first layer contains an input neuron of 13 and is used relu 
as an activation function. The second layer contains a neuro of 
64 and an activation function of tanh. The third layer contains 
an input neuron of 128 and an activation function of softmax, 
and finally, the fourth layer is the output layer that uses sigmoid 
as an activation function. Other hyperparameters used in 
training the model are loss= categorical_crossentropy, 
optimizer=adma, epoch, 20, and batch_size=32. The result 
obtained from the model shows an accuracy of 98.9% for 
training data and 99.1% for testing data. 
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Architecture 

I. INTRODUCTION  
Porosity and permeability are crucial properties of rocks in 

oil and gas reservoirs. Porosity refers to the amount of empty 
space, or pores, in a rock, while permeability is the measure 
of how easily fluids can flow through these pores. In general, 
rocks with higher porosity and permeability are more 
desirable for oil and gas production because they allow for a 
better flow of hydrocarbons. The porosity and permeability of 
a rock depend on various factors, such as the type of rock, the 
size and shape of the pores, and the presence of natural 
fractures. For instance, sandstone rocks are typically more 
porous and permeable than shale rocks, which have a finer 
grain size and fewer interconnected pores [1]. 

Geologists use various techniques such as core analysis, 
well logging, and imaging methods to measure porosity. The 
core analysis involves extracting cylindrical rock samples 
from the reservoir and analyzing them in the laboratory. Well-
logging uses sensors to measure the properties of the rock 
formation surrounding the wellbore. Imaging methods such as 
micro-CT scanning can provide high-resolution images of the 
pore space in a rock sample. Permeability, on the other hand, 
is more difficult to measure directly. In some cases, it can be 
estimated from porosity measurements, but in most cases, it 
requires a flow test using a fluid injection and production 
system. The flow test provides information on how easily 

fluids can flow through the rock formation and the rate at 
which they do so [2]. 

Porosity and permeability are critical factors in 
determining the productivity of an oil and gas well. Higher 
porosity and permeability values generally translate into 
higher production rates and longer well lifetimes. Low 
porosity and permeability can result in a lower production rate 
and limit the number of hydrocarbons in the reservoir. 

One way to improve the porosity and permeability of a 
reservoir is through hydraulic fracturing. Hydraulic fracturing, 
or fracking, involves injecting a high-pressure fluid into the 
reservoir to create small fractures in the rock. These fractures 
increase the permeability of the rock and allow for better flow 
of hydra hydrocarbons to the wellbore. However, hydraulic 
fracturing can also have negative environmental impacts, such 
as water contamination and air pollution. As a result, there is 
increasing interest in developing alternative methods for 
improving the porosity and permeability of reservoirs [3]. 

One such method is called well logging. Well-logging is a 
technique that uses various tools to measure the properties of 
the rock formation surrounding a wellbore. These tools can 
measure porosity, permeability, and other important 
parameters such as lithology, fluid saturation, and pressure. 
Well-logging is a non-invasive method that can provide 
valuable information about the reservoir without needing core 
samples [4]. 

Well logging tools can be broadly classified into open-hole 
logs and cased-hole logs. Open-hole logs are used before the 
well is cased, and they measure the properties of the rock 
formation in its natural state. Cased-hole logs, on the other 
hand, are used after the well has been cased, and they measure 
the properties of the rock formation through the casing. 

Various well logging tools are used to measure porosity 
and permeability, such as nuclear magnetic resonance (NMR), 
acoustic, and electrical logs. NMR logs use magnetic fields to 
measure the properties of the fluids in the pore space, which 
can be used to determine the porosity and permeability of the 
rock formation. Acoustic logs use sound waves to measure the 
speed of sound through the rock, which can also be used to 
determine porosity and permeability. Electrical logs measure 
the conductivity of the rock, which can be related to its 
porosity and permeability. 

Well logging is an essential technique for the oil and gas 
industry, providing critical information for reservoir 
characterization, well placement, and production 
optimization. For instance, well logging can help identify 
areas of the reservoir with higher porosity and permeability, 
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which are more likely to contain hydrocarbons. Well-logging 
can also help identify natural fractures and faults in the 
reservoir, which can affect the flow of hydrocarbons and the 
performance of the well. 

Porosity and permeability are also crucial in enhanced oil 
recovery (EOR) techniques. EOR techniques recover 
additional oil from the reservoir after exhausting primary and 
secondary recovery methods. EOR techniques can include 
injecting gases, chemicals, or water into the reservoir to 
increase the mobility of the oil and improve its recovery—the 
wellbore. In water injection techniques, porosity and 
permeability are important to ensure that the injected water 
can displace the oil and push it toward the wellbore. Porosity 
and permeability can also affect the reservoir's ultimate 
recovery factor (URF). URF is the fraction of the original oil 
in place (OOIP) that can be recovered using various 
production methods. High porosity and permeability can 
result in a higher URF because they allow for a better flow of 
hydrocarbons to the wellbore. Conversely, low porosity and 
permeability can result in a lower URF and limit the number 
of recoverable hydrocarbons in the reservoir. 

II. LITERATURE REVIEW 
The models developed in [5] depended on routine primary 

survey data findings and details about the core depth, top, and 
base profundities of usable horizons. They compared various 
machine learning algorithms to settle on the most effective 
one. Together, the three stone characteristics were best 
predicted and generalised by a model with two hidden Neural 
network layers. Support Vector Machine and Linear 
Regression Algorithms, for example, nevertheless fared well 
on the dataset. As a whole, the method enables expecting the 
change of porosity and porousness during desalination in 
permeable rocks and measuring salt focus without direct 
estimations in a lab. 

[6] used probabilistic neural networks (PNNs) to visualize 
lithofacies' successions as part of well-logging data to predict 
the transport of individual lithofacies at missing intervals. The 
good log considered neutron porosity, shale volume, and 
water immersion as depth indicators to characterize the 
lithofacies and show their permeability. Nevertheless, sand, 
sandstone, and permeability are the three distinct lithofacies 
types chosen for this study. The PNN successfully classified 
lithofacies precisely, as 95.81 percent of the expected 
lithofacies were correctly predicted. 

The nano porous natural/mineral microstructure of the 
Marcellus Shale was the focus of a study by [1], who used two 
state-of-the-art rock 3D models to investigate the impact of 
repository imprisonment (weight) on the porosity and 
permeability of shales. The typical oil/gas supply throughout 
Marcellus Shale’s play's genesis time frame was replicated in 
five different pressure scenarios spanning depths of 2,000 to 
6,000 feet. The advanced stone's pre- and post-pressure 3D 
models were analysed for their porosity and permeability. In 
both 3D models, the influence of weight on porosity and 
penetrability was relatively small. The trial results are relevant 
to evaluating the potential for shale supply creation under 
varying pressure settings and determining the oil-/gas setup. 

[7] introduce a novel method for scaling multimodal 
porosity-penetrability relationships using multivariate 
underlying relapse in machine learning. To infer an upsized 
porosity-porousness relationship, we first isolated each sub-
volumes primary attributes (porosity, stage availability, 
volume division, etc.) using image analysis tools. Then we 
relapsed these attributes against the tackled Darcy-Brinkman-

Stokes (DBS) penetrability using an Extra-Trees relapse 
model. Following this, the AI-predicted up-scaled porosity-
penetrability relationship was shown using a Darcy-scale 
stream and compared to full Darcy-Brinkman-STOKES 
(DBS) reproductions over ten tests with 3603 voxels. For all 
of the mathematical simulations, GeoChemFoam was used. 
The mathematical and AI upscaled models agreed well with 
the full Darcy-Brinkman-Stokes (DBS) recreations, with the 
AI model being significantly less computationally expensive. 

To develop reliable penetrability and porosity prediction 
methods, [8] amassed 53 representative instances with logging 
data from the Tarim Basin's Lower Cambrian dolomite 
supply. The data from the centre and the logs were run through 
five normal porousness porosity relationships and six machine 
learning methodologies to evaluate their usefulness and 
predict how well the different methods would work. The R2 
for their proposed coordinated approach to porousness 
prediction was 0.869, demonstrating that when the standard 
penetrability model was combined with Machine methods, the 
effect of heterogeneity on the prediction was mitigated. 

In order to determine whether or not artificial neural 
networks and genetic algorithms can reliably forecast the 
eleventh of penetrability in near carbonate rocks, [9] presented 
a case ten research. For the twenty-one conditions with 
average porousness, the RMSE was lowest for the RGPZ 
condition, which had an RMSE of 220.458% when predicting 
the test dataset, and highest for the Berg condition, at 2.368%. 
The root-mean-square error (RMSE) for the genetic algorithm 
was 240.433%, and the RMSE for the artificial neural network 
algorithm was 0.38%, based on a correlation of 23. Its 
improved capability to exhibit readily available pore 
microstructures due to interdependent and competing 
diagenetic measurements was attributed to the superior 
execution of 25 machine learning algorithms over 
conventional approaches. 

[10] offer a model for predicting oil supply porosity and 
penetrability using a machine learning concept and 
petrophysical data. Least Squares Support Vector Machine 
(LSSVM) was used, which is a comprehensive machine 
learning process. Northern Persian Gulf oil storage facility 
data, was used to design and test the Least Square Support 
Vector method. Researchers compared the Least Squares 
Support Vector Model's output to the relevant real-world petro 
data and the experimentally-obtained yields from various 
methods. It was found that the least squares SVM method 
normally has a total relative discrepancy of less than 1% 
between the methodology evaluations and the significant 
actual information. 

[11] offer two novel connections for penetrability 
forecasting, one with and one without collecting analysis. The 
results are encouraging, as the mean score of 16 after 50 
iterations are greater than 0.96. Using 19 fundamental 
patterns, the authors provided a substantial instrument for 
penetrability forecasts based on mathematical algorithms that 
recognise the pore structure . 

400 fully saline solution-soaked 3D tiny CT images of 
Bentheimer and Clashach, miniature centre attachments, were 
used by [12]. Researchers used various three-measurement 
picture investigation techniques to determine the rock 
attributes (such as porosity and total penetrability) and extract 
pore structure data (such as pore throat conveyance, pore 
availability) pore harshness) from the images. The total image 
dataset is split in two for training and testing, with the first 
containing 80 percent of the images and the second 20 percent. 
A computer-based reasoning model checks and approves both 
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sets of results. The k-overlay approval approach is used to 
improve the precision of the model. Other data, such as rock 
mineralogy, might be fused with the produced model to 
increase its accuracy. Nonetheless, while initially limited to 
the aforementioned rocks, the developed model can be 
successfully expanded to other stone kinds if enough micro-
CT images are available. 

III. METHODS/METHODOLOGY 
This paper aims to design a smart system for estimating 

the porosity and permeability of Carbonate Rocks Types. A 
detailed design of the proposed system can be seen in figure 1 
below 

 
Figure 1: Architectural Design 

A. Oil Reservoir Data 
This study makes use of the very last set of data that was 

sampled from the Arab-D carbonate oil supply by Clerke. 
Currently, Clerke has accumulated nearly 450 High Pressure 
Mercury Injection Capillary Pressure (HPMI) estimations in 
the Arab D repository; however, his final examples were 
randomly chosen from 1,000's pre-qualified centre examples 
guaranteeing a comprehensive delivery and portrayal of all 
Petrophysical properties. Clerke used a Thomeer hyperbola fit 
to determine the bulk volume occupied (BVi), the shape of the 
Capillary Pressure bend associated with the inconsistency of 
the pore mouths (Gi), and the initial displacement pressures 
(Pdi) for each pore framework I in each sample. Clerke 
established the PRTs using this data, factoring in the number 
of pore structures and their corresponding Initial 
Displacement Pressures [13]. The first 10 rows of the dataset 
are displayed in Figure 2. 

 

 
Figure 2: Dataset Description 

B. Data Pre-processing 
     The goal of data pre-processing is to prepare the data so 
that it is more easily understood by machine learning 
algorithms and thus improve the accuracy and reliability of 
the models. By properly pre-processing the data, we can 
ensure that the machine learning model can access high-
quality data, leading to more accurate predictions and better 
performance. 

C. Data Normalization 
      Normalization techniques can be applied to both porosity 
and permeability data individually or to the combined dataset. 
One commonly used normalization technique is Min-Max 
scaling, which scales the data between a minimum and 
maximum value. Another technique is z-score normalization, 
which standardizes the data to have a mean of zero and a 
standard deviation of one. 
 
𝑣!" = (𝑛𝑒𝑤_𝑚𝑎𝑥# −	𝑛𝑒𝑤_𝑚𝑖𝑛#) + 𝑛𝑒𝑤_𝑚𝑖𝑛#  Eqn. 1. 
 
      Where  A is the dataset features with n observed values 
v1, v2, … vn. 

 
By normalizing the porosity and permeability data, we can 
ensure that the machine learning algorithm can use the data 
more effectively to make accurate predictions. Additionally, 
normalization can help prevent overfitting, which occurs 
when the model is too closely tuned to the training data and 
performs poorly on new data. 
 

D. LSTM Model Architecture 
      An LSTM (Long Short-Term Memory) architecture was 
used to build a model for predicting porosity and permeability 
in the oil and gas sector. The following is the detailed 
architecture of the LSTM model: 
1. Input layer: The input layer takes the sequence of data of 
input_shape=(13). The number of input nodes will depend on 
the length of the input sequence, and the size of each input 
node will depend on the dimensionality of the input data. 
2. LSTM layer: This layer will have a certain number of 
LSTM units, allowing the model to learn the patterns in the 
input sequence over time. Each LSTM unit will have a cell 
state and a hidden state, which will be updated based on the 
current and previous input. 
3. Dense output layer: This layer will have six output nodes, 
one for each of the six output classes. The activation function 
used for this layer is softmax, loss= categorical_crossentropy, 

The mathematical equations of an LSTM architecture can 
be quite complex, but here are the main equations that describe 
how the LSTM units work: 

At each time step t, given the input vector x_t and the 
previously hidden state h_{t-1}, an LSTM unit computes: 

1. The forget gate f_t, which determines how much of 
the previous cell state to forget: 

f_t = σ(W_f · [h_{t-1}, x_t] + b_f) 

where σ is the sigmoid function, W_f and b_f are the 
weight matrix, and bias vector for the forget gate, and [h_{t-
1}, x_t] represents the concatenation of the previous hidden 
state and the current input. 

2. The input gate i_t, which determines how much of 
the current input to remember: 

i_t = σ(W_i · [h_{t-1}, x_t] + b_i) 

3. The candidate cell state ċ_t, which determines the 
new information to add to the cell state: 

ċ_t = tanh(W_c · [h_{t-1}, x_t] + b_c) 

Oil Reservoir Data

Data Pre-
processing

Data 
Normalization Model Training

LSTM Model Architecture

Model EvaluationModel Output
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4. The new cell state c_t, which combines the previous 
cell state with the new information: 

c_t = f_t * c_{t-1} + i_t * ċ_t 

5. The output gate o_t, which determines how much of 
the cell state to output: 

o_t = σ(W_o · [h_{t-1}, x_t] + b_o) 

6. The new hidden state h_t, which is a filtered version 
of the current cell state: 

h_t = o_t * tanh(c_t) 

where W_i, W_f, W_c, and W_o are the weight matrices, 
and b_i, b_f, b_c, and b_o are the bias vectors for the input, 
forget, candidate, and output gates, respectively. 

The LSTM architecture uses these equations to update the 
cell and hidden states at each time step, allowing it to learn 
patterns in the input sequence over time. 

IV. RESULTS 
An experiment was carried out to build a smart system to 

predict porosity and permeability on carbonate rocks. The 
experiment phase comprises two phases. The first phase 
involves exploratory data analysis, and the second phase 
involves building an LSTM model to predict porosity and 
permeability in carbonate rock types. The following phases 
can be explained in detail: 

A. Phase 1: Exploratory Data Analysis 
 

We carried out an analysis of the dataset using charts. This 
was achieved using the matplotlib library in python. Figure 3 
shows a correlation matrix of the various features on the 
dataset. The correlation matrix is used in checking if there 
exist relationships between the dataset attributes. A countplot 
that shows the different classes of the petrophysical rock types 
can be seen in Figure 4.  A scatter plot that shows the different 
levels of porosity and permeability in carbonate rock types can 
be seen in Figure 5. 

 
Figure 3: Correlation Matrix 

The correlation matrix shows relationships between 
attributes in the dataset. The 1 in diagonal shows that there 
exist relationship features in the dataset. 

 
Figure 4: Countplot of the Rock index 

The rock index represents the size of the pore system. The 
pore system determines how porous the carbonate rock is. 

 
Figure 5: Core Porosity-Permeability data. 

This shows a scatter plot of the porosity and permeability in 
the carbonate rock. The results show that the rock index 
changes at different permeability and porosity values. The 
rock can be either porous, meso porous, micro-porous, 
macroporous, etc. 

B. Model Training with Lstm 
      The model was trained using LSTM. The model was 
trained using the four layers. The first layer contains an input 
neuron of 13 and is used relu as an activation function. The 
second layer contains a neuro of 64 and an activation function 
of tanh. The third layer contains an input neuron of 128 and 
an activation function of softmax, and finally, the fourth layer 
is the output layer that uses sigmoid as an activation function. 
Other hyperparameters used in training the model are loss= 
categorical_crossentropy, optimizer=adma, epoch, 20, and 
batch_size=32. The graphical representation of the loss and 
accuracy values during training and testing can be seen in 
Figures 6 and 7.  
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Figure 6: Model accuracy vs. Epoch 

 
This shows the accuracy of the model at various training 
epochs. Here, the model achieved an accuracy of 98.9% for 
training data and 99.1% for testing data. 
 

 
Figure 7: Loss vs Epoch 

 

V CONCLUSION 
      This paper presents a smart system for predicting the 
porosity and permeability of petro-physical-rock-types. The 
system starts by training a model using just the permeability 
and porosity data obtained from a reservoir database. The 
model was trained using an LSTM model. The model was 
trained using LSTM. The model was trained using the four 
layers. The first layer contains an input neuron of 13 and is 
used relu as an activation function. The second layer contains 
a neuro of 64 and an activation function of tanh. The third 

layer contains an input neuron of 128 and an activation 
function of softmax, and finally, the fourth layer is the output 
layer that uses sigmoid as an activation function. Other 
hyperparameters used in training the model are loss= 
categorical_crossentropy, optimizer=adma, epoch, 20, and 
batch_size=32. This shows the accuracy of the model at 
various training epoch. Here, the model achieved an accuracy 
of 98.9% for training data and 99.1% for testing data. 
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